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Abstract

This report describes techniques for robust extraction of persistent features such as
folds, corners and edges from a noisy range image, followed by connecting these fea-
tures into a topological structure that is mapped to a garment template by using knowl-
edge and geometry. The resulting mapping allows detection of grasping affordances or
planning robot movements that will reveal such affordances.

Algorithms for garment shape recognition in a flat state are presented. The algorithms
are designed to be robust to moderate deformations.

Another algorithmic method recognizes a garment and registers its shape with a tem-
plate even when the garment is folded on itself. The folding axis is also identified with
respect to the template, thus allowing the planning of an unfolding sequence.

First experiments exploiting only boundary shape primitives demonstrate promising
results under significant occlusions of garment parts.

Finally, a linguistic inspired architecture based on graph grammars is proposed to per-
form both bottom-up and top-down parsing of a garment image incorporating high-

level knoweldge of the garment structure.




Clopema - 288553 D5.1:Report on the Reasoning Mechanism and the Object Representation

Keywords

garment manipulation, visual scene understanding, perception




Clopema - 288553 D5.1:Report on the Reasoning Mechanism and the Object Representation

Revision History

Version | Description Author(s) Date

0.1 First Draft CERTH 7 Jan 2013
0.8 Early Final Draft CERTH 18 Jan 2013
0.9 Corrected Version Libor Spacek,CMP | 31 Jan 2013
1.0 Final Version+Abstract Libor Spacek,CMP | 1 Feb 2013




Clopema - 288553 D5.1:Report on the Reasoning Mechanism and the Object Representation

Contents

(I__Introduction| 1

[2__State of the Artl 2
2.1 ~Physics Based Modelling| . . . . ... ... ... .. ... .. ... 3
[2.2  Deformable Templates| . . . . ... ... ... ... ... ........ 4
[2.3  Part-based Representations| . . . . . . ... ... ... . L. 6

3 Feature extraction and topological analysis of a hanging towell 7
3.1 Introduction] . . . . . . . ... 7

2 b re extractionl . . . . . . . . . . . e e e e e e e

[3.2.1 Detection of the towel’s edges and junctions|. . . . . . .. .. ..

[3.2.2  Decomposition of the towel into layers| . . . .. ... ... ... 10

[3.3 Topological analysis| . . .. ... ... ... ... ... . .. .. 13
[(3.3.1 Problem description| . . . . ... ... ... ... ........ 13

[3.3.2  Rules for the relative topological connection of layers|. . . . . . . 14

[3.3.3  Indicators for the correct final configuration| . . . . . . . ... .. 16

[3.4  Experiments|. . . . . . ... ... 18
3.5 Conclusions . . . . . . . .. 18

4 Clothes Template Matching| 19
1 Intr 100| . . . L e e 19

4.2 Proposed Algorithms| . . . . . . ... ... ... o000 20
4.3 Experimental evaluation| . . . .. ... ... ... ... ... .. ... 24
44 Conclusion| . . .. ... ... 26

[ Modelling folded garments to facilitate unfolding| 28
0.1 Introductionl . . . . . . . ... 28
[5.2° Proposed Method| . . . . .. ... ... ... ... .. . 29
[5.3  Experimental Evaluation| . . . . . . ... ... ... ... 00000, 34
5.4 Conclusion| . . ... .. ... 36

{6 A Framework for High-level Understanding 38
-of-the-Artl . . . . . . . 38

(6.2  Graph Grammars Basic Theory|. . . . . . ... ... ... ... .. ... 41
[6.3  Boundary simplification and primitives extraction| . . . . . . . .. .. .. 41
[6.4 Logic Rules and Attributes| . . . . . . .. .. .. ... ... ... ... 43




Clopema - 288553 D5.1:Report on the Reasoning Mechanism and the Object Representation

[6.5 Inference, Training and top-down hypothesis| . . .. ... ... ..... 46

[Z__Conclusions| 49



Clopema - 288553 D5.1:Report on the Reasoning Mechanism and the Object Representation

1 Introduction

Clothes manipulation requires advanced visual and dexterity skills. Children manage to
perform clothes manipulation tasks such as folding a towel only when they reach an age
of between 3 and 4 years old. Due to the soft and flexible nature of the manipulated
materials, the visual system has to work hard dealing all the time only with sparse visual
cues. This is because the cloth surface may be mostly occluded and the 3D shape of the
garment object may be deformed to a configuration hardly resembling its prototypical
shape.

Yet, by watching humans performing tasks such as laundry folding, one may learn a
more or less consistent strategy of manipulation steps that have the goal of bringing the

item into a progressively simpler configuration:
e isolating an item from the heap by picking and lifting

e flattening, i.e. iterating a series of picking and lifting actions by alternating hands
that will not allow the garment to fall. Alternatively, one may slide the fingers along
a seam of the garment while holding it at another point on the seam. In this step
the goal is the identification of two grasp points that will bring the garment into a
relatively “flat” hanging configuration (under gravity). In this state the garment will
exhibit simple folds, largely resembling layers of planar polygons. After this step
the garment may be spread out and laid on a flat surface such as a table to free both
hands

e complete unfolding of the garment, using one or both hands
e a sequence of stereotypical movements for folding the garment.

Prior learning is also essential in performing this task accurately and without resorting
to blind exploration. Recognition of the type of the garment (e.g. towel, shirt, trousers)
will guide, for example, the search for the grasp points during the flattening stage. Towels
should be ideally held by two non-opposing corners, and shirts should be ideally held
near the top of the sleeves. Unfolding the garment is effective only when the goal shape
is known, and folding it requires that structural features such as buttonline, neckline and
the front side have been identified. Apart from recognition, elementary physics will be
learned from experience. For example, we may roughly predict the shape of a towel, held
by two non-opposing corners, colliding with a table. This allows placing the towel on the

table without any folds.
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What will it take for a robot to perform the laundry task? Only a few researchers have
explored this question during the last couple of years. Although successful demonstra-
tions have already been achieved by US and Japanese groups, they are characterized by:
a) strong simplifying assumptions to facilitate visual perception and b) exploiting only
low-level visual cues and relatively “blind” manipulation (e.g. rotating a hanging towel
until a corner is found). These restrictions hinder the applicability of these techniques to
the real-world conditions.

From the point of view of required computer vision skills, CloPeMa will work to-
wards: a) advancing the state-of-the-art in visual perception of deformable materials such
as clothes and b) incorporation of high-level knowledge and reasoning in different lev-
els of the perception chain. This deliverable presents the first achievement towards these
goals.

In section [2| we briefly review the state-of-the-art in visual perception and modeling
of deformable objects and try to link it with clothes perception.

In section[3|we try to explore the question whether the configuration of a cloth hanging
from a single point may be recovered from a single image. Therefore we developed
techniques for robust extraction of persistent features such as folds, corners and edges
from a noisy range image. Then we connect these features into a topological structure that
we are able to map to the cloth rectangular template by imposing prior-level knowledge
and geometry reference. The resulting mapping allows us to detect grasping affordances
or if none is identified to intelligently plan a movement that will reveal such affordances.

In section ] we present algorithms for garment shape recognition in a flat state. The
algorithms are designed to be robust to moderate deformations.

We also present an algorithm (section[5)) that will recognize a garment and will register
its shape with a template even if the garment is folded on itself. The folding axis is also
identified with respect to the template thus allowing for planning an unfolding sequence.

Finally, in section[6| we propose a linguistic inspired architecture based on graph gram-
mars that is able to perform bottom-up, top-down parsing of a garment image incorporat-
ing high-level knowledge of the garment structure.

Very first experiments exploiting only boundary shape primitives demonstrate promis-

ing results even under significant occlusions of garment parts.

2 State of the Art

We briefly review the state-of-the-art in computer vision research related to modelling,

reconstruction and recognition of deformable objects. A state-of-the-art of vision tasks
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related to clothes manipulation will be given in the individual sections of proposed algo-

rithms.

2.1 Physics Based Modelling

Physics based modelling techniques use the laws of physics to simulate the shape and
movement of deformable objects such as clothes. Terzopoulos et al. [55]] in the 90s intro-
duced the concept that has since become widespread in the computer graphics community.
Later on several applications in computer vision and especially medical image process-
ing used the concept of estimating surfaces deforming under physics laws. Physics-based
models of garments are today applied widely for realistically simulating virtual humans
in various applications and cloth simulation is today integrated into both commercial and
open source 3D modelling applications (e.g. Blender). Industrial applications of cloth
and garment simulation techniques include material simulation and product design, film
and 3D game production and medical simulation.

Physically-based cloth simulation is commonly formulated as a partial differential

equation over time:
oE

x:M*I(—g +F) (1)
where x is the shape of the cloth and M is its mass distribution. E is the cloth’s internal
energy such as stretching, bending and shearing and F are the external forces (as a func-
tion of x and x ) which include rigid attachment points, collision and self-collision forces,
damping etc.

This is subsequently discretized using a mass-spring model or finite-element model
and the resulting differential equations are solved using numerical integration techniques.
Early methods used explicit integration techniques (such as Euler) [8] which however
require many small time steps to stably advance the simulation. More recent implicit
[2] and semi-implicit [16] integration techniques on the other hand are more suitable for
stretch-resistant cloth physics.

Current research on physics-based modelling of cloths is aiming at the following re-
search challenges [[11]]: a) increasing the accuarcy and realism of the simulation by han-
dling non-linearity and exploiting more accurate finite-element models, b) increasing the
speed of the simulation without sacrificing the accuracy or resolution, ¢) development
of efficient collision and self-collision detection as well as collision response generation
techniques, d) linking the parameters of mathematical models with real-world material
properties, thus allowing for easier control of the simulation fidelity.

In the field of computer vision, the term physics-based modelling is used to describe
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techniques that exploit physical laws for understanding the appearance and movement of
objects in images. Most well known such techniques are “Snakes” [29], simulated elastic
strings, that are widely used for image segmentation. Many such techniques have also
been developed for the analysis of image sequences of deformable objects [26} 38]]. Most
of these works are suitable for objects depicted in relatively simple deformations, such as
bending.

On the other hand, little effort has been put into employing physics-based models
to track cloth motion. The majority of few existing approaches employ an analysis-by-
sythesis approach seeking to minimize with respect to unknown parameters the discrep-
ancy between the actual image of the fabric and one rendered based on cloth simulation
techniques.

Jojic and Huang [27] register 3D range data of a known rectangular piece of cloth
laid over a known collision object with the corresponding simulated geometry in order
to obtain the simulation model’s parameters that lead to the depicted real-world draping.
Similarly, Bhat et. al [6] used image sequences of real fabrics under motion to cali-
brate the static and dynamic parameters of a cloth simulator. They compare two video
sequences, one from simulation and one from the real world, by means of the discrep-
ancy in the detected folds as well as the depicted silhouettes. Charfi et al.[9] estimate the
damping parameters of a textile by analysing a drooping cloth. Their approach is based
on analyzing the trajectory of markers on the surface of the cloth and minimizing their
discrepancy with respect to those produced by a cloth simulator. A markerless approach
is used in [23] for motion tracking and parameter estimation of a known fabric.

The above physics-based cloth estimation techniques do not address the problem of
estimation of the configuration of a possibly unknown garment, constrained by one or
more points. For known cloth geometry Kitta et. al [32] use a database of previously
simulated cloth configurations (of a known item) hanged from different points. This is
used to determine the state (grasping point) of the cloth depicted in an image by searching
the database for an image with a similar silhouette. A success rate of 80% is reported.
Similarly, Cusumano et. al [15] use a cloth simulator to obtain a generative model of the
item’s sihlouette given the hanging points and the item’s prototypical shape (from a small
set).

2.2 Deformable Templates

A simple but intuitive representation of cloth geometry is a quasi-developable surface or
a surface isometrically embedded in 3D. More simply a planar polygon surface or 2D

template shape may be deformed to 3D space using a quasi-isometric transformation. We

4
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call such a representation a deformable template. The key problem here is the recovery
or reconstruction of the surface given an image of the cloth under random configura-
tion. The problem is commonly addressed as a problem of finding dense correspondences
between image points and template points. These are subsequently used to construct a
parametrization of the discrete surface so that all points may be mapped to points on the
template. In the context of robotic cloth manipulation, this approach would be very useful
for generating action plans that will lead the item to an unfolded configuration.

Should the input contain a 2D image or texture image of the cloth or garment, the first
step in surface recovery, correspondence estimation, is usually simplified by assuming
that the surface is covered by a non-repetitive texture. Then local feature descriptors
such as SIFT may be used for robust correspondence finding [45] 13, 1]]. Correspondence
filtering is achieved by imposing isometric constraints among candidate correspondences
as in [45, [13]. Both approaches above exploit local consistency in candidate matches. In
[13] clusters in matched features may be used to segment the surface into developable
patches using a region growing strategy. In [S8] a checkerboard pattern printed on a cloth
is tracked from a video sequence thus allowing for easier correspondence estimation and
surface parametrization. Similarly, [S2] use a specially designed color coded pattern.
Local techniques [45, [13] or global techniques [19, 51] are subsequently used to obtain
the surface parametrization.

Several works also use the assumption that the deformable surface is planar on the
local scale [54, [12}, I50]]. Surface patches are reconstructed first and glued together in a
second step. Others [7, 3] will explicitly model the underlying template warping function
and reconstruct its control parameters by imposing the isometry constraint. The warping
function is assumed to be continuously differentiable and invertible. In contrast [20]
propose analytical solutions of the warping function given the boundary contour only.

There are several limitations of the state-of-the-art in the context of robotic manipula-

tion:

e although the global shape of the template may be assumed to be known, its dimen-
sions and scale are usually unknown. So is the texture of the garment, if any. This

makes techniques relying on dense point correspondences difficult to apply

e existing techniques will be more suitable for limited deformations such as a waving
flag or a bent piece of paper. Most of the existing works do not deal with occlu-
sions caused by folds and when they do they consider them as outliers. Thus the

occlusions coverage is assumed to be small

e existing techniques assume most of the surface is visible, which is not the case with
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a piece of cloth hanging from one or two points. Partial matching techniques would

be useful in this situation.

2.3 Part-based Representations

In the previous section we reviewed techniques that try to capture a global deformation
function from images. An alternative approach is to use independent models for local ap-
pearance over parts or patches and a geometric model for the spatial relationship among
the parts. This approach was proven quite promising especially in situation where local
appearance may be modelled effectively (e.g. faces or body parts) and geometric variabil-
ity may be learned from examples.

Existing techniques mainly differ in the way they impose geometric constraints and
the techniques used to fit the model to the image. Constellation model techniques con-
strain the part locations into a fixed set of configurations (e.g. using interest point de-
tectors) and subsequently learn Gaussian distributions of part relationships (e.g. [18]])
resulting in a generative model for each object class. Since each detected feature may be
assigned to one of possible parts, all permutations of features over parts need to be exam-
ined to determine object class and configuration, thus being computationally expensive.
The Pictorial Structure approach e.g. [[1'7] explicitly models part relationship by a graph
structure with known topology. In this case a match cost is defined over a dense set of
locations, and the geometric arrangement is captured by “springs” connecting the parts.
By restricting the topology of the graph to a tree (star-like or fan-like) efficient algorithms
based on dynamic programming and generalized distance transform may be applied for
efficiently minimizing the energy of the model given the image.

While the above part-based deformable models can capture significant variations in
appearance, they are not suitable for modelling object categories with rich structure, con-
taining for example a hierarchy of parts, optional parts, or parts that themselves may be-
long to different categories. Grammar based models may be considered as generalization
of deformable part models by representing objects using variable hierarchical structures.
Each part in a grammar based model can be defined directly or in terms of other parts
using a sequence of high-level production rules, thus allowing for explicitly modelling
complex structural variations.

In the category of part-based representation we may also mention sparse or “bag-of-
word” models. The majority of these techniques do not model the relationship between
parts, nevertheless they may be quite effective especially when appearance cues over local

patches provide strong discriminatory information.
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3 Feature extraction and topological analysis of a hang-

ing towel

3.1 Introduction

An important part of the robotic unfolding of garments is the determination of grasping
points. The points from which the clothing article is grasped play decisive role in the
formation of its configuration. Thus, their proper choice can accelerate and facilitate
the unfolding procedure. On the other hand, the knowledge of the garment’s current
configuration provides useful information for the detection of the proper grasping points.

Three different approaches to the detection of grasping points for the unfolding task
can be distinguished in the robotic literature. The first category detects characteristic
features of the clothing article and uses them as grasping points. For example, in the case
of a towel, its corners are considered good grasping candidates [15], [56], whereas for a
polo-shirt it is its collar [46].

In the second approach the initial grasping points bring the garment in a more or less
known configuration, so as to facilitate the further selection of grasping points. Osawa
[44]] and Cosumano-Towner [[15] used a heuristic technique to achieve it. By iteratively
grasping the lowest hanging points of the article, each kind of garment is led into a limited
number of configurations (e.g. a towel would be grasped only by two non neighbouring
corners). Similarly, Kaneko [28] detected parts of the hemline and re-grasped them so as
the robot could hold the garment from two different edges of the hemline. In both cases,
in the end, the garment is either unfolded or folded in half. The knowledge of the con-
figuration facilitates the detection of the necessary grasping points for further unfolding
manipulations, when needed.

Finally, other researchers estimate the garment’s state, in order to detect the grasping
points. Kita et al. [32] proposed a mass-spring model to simulate how clothing, in par-
ticular a T-shirt, hangs. The T-shirt is a priori grasped from a point on its hemline. Their
work showed the ability of the simulator’s models to adjust to the silhouettes of the true
hanging garment while 3D point clouds extract the configuration of the clothing article
with a good success rate. In addition, their system is able to identify and grasp a desired
point with the other gripper. Bersch [5] used a T-shirt equipped with fiducial markers
and transformed it from a random configuration into an unfolded state. At the end of the
unfolding procedure the robot holds the T-shirt by its shoulders. The configuration of the
T-shirt is estimated with the help of cloud representation and fiducial markers, while the

selection of the next grasping point is based on a greedy policy that chooses the point with
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the smallest geodesic distance to the target grasping points.

In the presented approach, the topology of the visible features of a hanging towel
is analysed. Firstly, the towel, which is hanging in the air from one of its corners, is
decomposed into layers. Then, for each layer the corresponding position in an unfolded
configuration of the towel is obtained. Our goal is to infer the possible configurations of
the towel given only its visible part. Based on the set of obtained configurations we may
facilitate the task of selecting grasp points or proposing a re-grasping strategy so that the

grasp points will become visible.

3.2 Feature extraction

The first step for the topological analysis of the towel is the extraction of critical features
such as edges and junctions that will provide all the information for the decomposition of
the towel into layers. The extraction of these features and the way the towel is decomposed

into layers is described in the two following subsections.

3.2.1 Detection of the towel’s edges and junctions

The detection of the towel’s edges and junctions is made in two phases. Firstly, the edges
or parts of them are detected while in the second phase these edges are connected to each
other in order to form longer edges or junctions. These features are extracted from 3D
information of the towel’s visible side, which is acquired from an Asus Xtion sensor.

So,initially, edge detection is performed on the 3D information of the towel. With the
help of hough transform, the edges are separated into four categories: 1)the vertical, 2)
the ones that incline rightwards, 3) the ones that incline leftwards and 4) the completely
horizontal. Due to the noise of the data that are used and the curvature of the edges
to be detected there is a tolerance on the inclination of the edges of each category. For
example, in figure[I] all the vertical edges are marked with red. Next, all the pixels that are
located close to each other and belong to edges that are classified into the same category
are connected in order to form bigger edges (Douglas-Peucker is used in order to create
polygonal lines from the pixels). In figure[2] the edges that are created after this procedure
are depicted with red,green and blue for the categories 1,2 and 3 respectively.

At this phase, several edges of the towel are detected but it is not yet known how they
are connected to each other. According to their classification, the edges might be con-
nected to a bigger one or create a junction. Specifically, two edges of the same category
can be unified, when the higher end of the first one is close to the lower end of the second

one, or they can create a junction, when both lower/higher ends are close to each other. In
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Raps

Figure 1: Detection of vertical edges

Figure 2: Detected edges of all the categories
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edges to be
connected

junctions

Figure 3: Junctions and connected edges

addition, when the end of an edge is close to another edge of a different category, then a

junction is created. The edges’ connection and the detection of junctions are depicted in
figure 3]

3.2.2 Decomposition of the towel into layers

For the extraction of the towel’s layers, the towel is held by one of its corners m Its edges
and junctions of edges are considered known. These features are either formed by folds or
belong to the outline of the towel when it is fully extended. Folds, which are responsible
for the formation of more than one layer, usually start close to the grasping point. In our
method, all the edges that begin from a fold close to the grasping point are considered to
start from it for convenience, without loss of generality.

The edges can be divided in two categories: 1) the vertical edges and, 2) the horizontal
edges, which actually correspond to the categories 2,3 and 4 mentioned in the previous
subsection (Fig[]a). The vertical edges usually end at the grasping point. Sometimes, due
to overlapping, there are vertical edges with the part close to the grasping point hidden
from the camera. Nevertheless, for the formation of layers, the visible part, which is
inclined towards the grasping point, is extended to it (Fig {]b). In addition, there are
vertical edges that might intersect far from the grasping point. These cases occur when a
part of the towel is hidden behind the visible side(Fig[5]g).

The junctions that are taken into account for the extraction of layers are points of

'Our original intention was to start from random grasp points, but this was more challenging than ex-
pected and will be revisited in future

10
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Figure 4: Edges and junctions of a hanging towel

intersection of two vertical or two horizontal lines or points where the end of a horizontal
edge intersects with a vertical edge. In figure d]c the junctions that are taken into account
for the extraction of the towel’s layers are depicted with small black squares.

For the extraction of the towel’s layers, the following procedure is applied iteratively.
The lowest corner, not examined yet, is picked and the two junctions it is connected to,
that lead to higher located junctions, are examined. These junctions are connected to each
other (in cases where the layer is triangular) or are both connected to the same junction
(the layer is quadrangle). For example in figure [5a, junction j1 is connected, through
edges e2 and e3, to junctions j2 and j3, which are connected to each other with edge
e3. So, a triangular layer, formed by the edges el, €3 and e3, is detected. Similarly, a
rectangular layer, formed by the edges el, e2, e3 and e4, is detected in figure [5ld. If a
junction is used as the lower junction of a layer then it cannot be used again in another
layer. Actually, every junction can participate in N-1 layers, where N is the number of
edges intersecting at this junction. The layers are represented by triangles or rectangles
for convenience and in order to reduce computational complexity. In figure[5] the detected

layers of two different configurations of the towel are highlighted.

11
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Figure 5: Detection of layers

12
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3.3 Topological analysis

When the decomposition of the towel into layers is completed, their topological analysis
begins. For each layer, its relative position to the other layers in an unfolded configuration
of the towel is found. In addition, the layers’ edges are mapped to the towel’s outline edges

when it is unfolded.

3.3.1 Problem description

The difficulty of the problem is that a towel, like any piece of clothing, is a highly de-
formable object with infinite degrees of freedom. So, although holding the towel from
one of its corners reduces the number of configurations, the state of the towel cannot be
predicted. In addition, the presented method uses data detected from only one side of the
hanging towel. This means that there are hidden parts of the towel, in other words, hidden
information about its configuration. Finally, another difficulty is that the layers are not flat
to the surface of the camera, as a result, they cannot be used are parts of a puzzle that fit
perfectly with each other and form an unfolded flat towel (even if it is with missing parts,
as mentioned before).

The topological analysis is based on restrictions that are dictated by the towel’s rectan-
gular shape and observations concerning the configurations of a towel hanging from one
of its corners. Actually, rules that determine the connection of the layers and indicators
that suggest a preference to a candidate configuration are suggested. Firstly, the relative
position of the layers with each other is defined and then their edges are mapped to the
outline of an unfolded, straightened towel.

In the proposed method, the layer with the lowest hanging point is considered stable
(as is mentioned in the next paragraph this layer includes one of the diagonals of the
towel). Starting from the next layer with the lower corner, one by one, the rest of the
layers are placed in the right or the left side of the already located layers (this applies
for the layers starting from the grasping point; layers that start from a lower point are
examined in the end). Depending on the side it is placed, the layer is left as it is or its
symmetric is used. If there is a rule that bans one of the two possible positions or that
dictates a definite connection of one layer with another, then there is only one solution
for their connection. In cases where both positions are possible, there are indicators that
suggest one of them without excluding the other one. When all the layers are taken into
account, all the possible configurations are evaluated and, according to the indicators,
one of them is the one that corresponds to the real configuration. Since the winning

configuration is found, the edges of the layers are mapped to the sides of an unfolded

13
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(a)

Figure 6: The towel in an unfolded and a hanging configuration
towel.

3.3.2 Rules for the relative topological connection of layers

The parts of the towel that are not visible to the camera and the different directions of
the layers did not allow facing the problem of the hanging towel’s topological analysis
as a puzzle. So, rules based on the rectangular shape of the towel and on observations
of the hanging towel’s configurations are introduced in the following paragraphs. If the
reader does not wish to read the details of these rules, he/she can skip this subsection and
proceed to the following without any problems in the comprehension of the text.

The fact that the shape of a towel is rectangular dictates some restrictions about the
possible topological relations between the layers. First of all, when a towel is held by one
of its corners, then the lowest point of the hanging article corresponds to its not neigh-
bouring corner. So, it is a priori known that the layer with the lowest point covers the
diagonal of the towel (in figure [6]b it is layer L1). Nevertheless, it is not known if the
edges of the lowest corner correspond to the lower or a side edge in an unfolded configu-
ration(Fig [6]a). Another restriction that the towel imposes is that its shape is convex. So,
the closest to the diagonal a layer is, the longer its edges, when it is compared with other
layers placed on the same side of the diagonal. For example, in figure[6]b layer L3 cannot
be placed closer to the diagonal than L2, or L4 cannot be left on the side of the layer L1
where it is currently located.

An important step for the topological analysis of the towel is the analysis of its current
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Figure 7: Connection of layers

hanging configuration. The connection of the layers is determined by their edges. Two
layers might have one common edge, they might not have any edge in common or an edge
of a layer might coincide with a part of the edge of another layer. In this case the layers
are called neighbours (in fig[7]a L2 and L3 are neighbours, whereas in fig[7]b L3 and L4
are neighbours). The first case is rather interesting since its gives a definite topological
connection between the two layers with the common edge. The two layers occur from a
fold and correspond to neighbouring positions in the unfolded configuration of the towel
(in fig[7la L1 is connected to L2 whereas in fig[7]b L1 is connected to L2 and L3 and L4
is connected to L5). This common edge is called folding axis(Fig[7). In addition, if the
folding axis is one of the edges that establishes two layers as neighbours in the hanging
configuration, then the two layers cannot be at the same side of the towel’s diagonal in an
unfolded configuration ( in fig[7]a for layers L2 and L3). This occurs only for layers that
start close to grasping point. Actually, if this was not the case, the layer with the folding
axis had to extend behind the visible part of the towel and then continue to the neighbour
layer. In this case, it would not be possible for the neighbour layer to start from a point
close to the grasping point.

Finally, by observing the relations between layers, indicators about the most plausible
relative position of two layers are introduced. These indicators are taken into account only
when a definite connection between the layers has not been established by the previous
rules. So, it is observed that a layer is usually topologically connected, in the unfolded

configuration, to the layer and from the side of the layer with which their edges: 1) have
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Figure 8: Configurations excluded from the indicators

the smaller difference in length, 2) are neighbours. As it is shown in fig [8]b, these con-
ditions are valid for the layers .3 and L4. An exception is made and these indicators are
not taken into account, in configurations like those depicted in figure[§] In these cases: 1)
the layer with the diagonal is neighbour with another layer (in figure[8]b L1 is neighbour
with L2) or 2) the layer, with which the layer with the diagonal is connected through a
folding axis, completely overlaps it and is neighbour with another layer (in figure [§la L2
completely overlaps L1 and is neighbour with L3). The exception is valid only for the

connection of these neighbouring layers and not for the whole configuration.

3.3.3 Indicators for the correct final configuration

After the examination of the relative position that the layers could have in an unfolded
state, more than one possible configuration might occur. Although there may be a pref-
erence for one of them according to the method’s indicators, the whole configuration is
evaluated in order to achieve better results. Once more, the rules suggested here cannot
give a definite result on their own, but combined with the previous indicators they de-
termine the solution. So, one indicator that a configuration is correct is that the smaller
edge connected to the grasping point, which probably corresponds to the upper side of the
towel, and the smaller edge connected to the towel’s lowest hanging point, which prob-
ably corresponds to the lower side of the towel, incline towards the same side(Fig [9c).
In addition, another indicator about the correct configuration of the towel is based on the

lowest corner of the towel, when both of its edges are visible (e.g. when the layer which
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Figure 9: (a) the towel in a random configuration, (b) a candidate for the layers’ topolog-
ical connection, (c) the correct topological connection of the layers

includes this corner is rectangular, like L1 in [Op). Actually, the angle that the diagonal,
which connects the grasping point with lowest hanging point, creates with the lower edge
of the towel is bigger or, in the rare case of a square towel, even with the angle created
by the diagonal and side edge of the towel (for convenience the complementary of these
corners are calculated as shown in figure[9c). So, according to these angles the lower side
of the towel can be found(e.g. edge el in Fig[9k ). If the smaller edge connected to the
grasping point, which usually corresponds to the upper edge of the towel, inclines to the
same side as the lower edge, then this constitutes an indicator that this configuration is
correct.

In figure 9] two possible results from the analysis of hanging towel’s state in [Jp are
shown. The shapes that occur provide the topological connection of the layers and not
the actual shape of the towel. As it is obvious from E}a in E}) the result is wrong, whereas
in[9]c correct. The same conclusion occurs from the application of the two indicators for
the correct final configuration. In figure [Oc edges el and e3, which are the smaller edges
connected to the lower point of the towel and the grasping point, incline towards the same
direction. In addition, angle 2, is smaller than 1, implying that edge el is the lower edge

of the towel.
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3.4 Experiments

The presented method was tested with 50 different configurations of a hanging towel.
Correct topological connection of the layers and correspondence with the edges of the
towel in an unfolded configuration was achieved for 49/50 configurations, while for one
case there was a tie between the correct result and a wrong one.

An example that proves the correctness of the method is shown in figure 0] The
hanging towel is divided in 5 layers. For Layers L1, L2 and L3 and for L4 and LS, there
is a definite topological connection through their folding axes. The fact that L3 and L4
are neighbours and that their edges have small difference in length indicate a possible
topological connection between these two layers. Although there is a preference for the
combination of the layers depicted in fig Ok, due to the relation between L3 and L4, the
combination in fig[9p is not excluded. Both of them are evaluated for their final result. As
has already been mentioned, the combination depicted in fig [0 satisfies the indications
for a correct final topological connection. So, since all the indications agree with it, the
topological analysis depicted in fig[9 is considered correct. In addition, according to the
indicators, edge el corresponds to the lower edge of the towel, e4 to a side edge, €2 and
e5 to a side edge other than e4. E3 corresponds to the upper edge of the towel or to an
edge created by a fold close to it. The upper edge of a towel is not always visible to the
camera (fig ), and since information about the texture of towel, which is different at the
outline, is not used, it is not possible to be affirmative that an edge is the upper edge of a

towel.

3.5 Conclusions

The presented method analyses the topology of a hanging towel. The towel is decomposed
into layers, which are matched to positions in an unfolded configuration of the towel. The
parts of the towel that are not visible to the camera and the different directions of the layers
did not allow facing the problem as a puzzle. So, rules based on the rectangular shape
of the towel and on observations of the hanging towel’s configurations are introduced.
Firstly, the relative position of the layers is examined and then the whole topological
connection is evaluated. According to the final result, the edges of the layers are matched
to the edges of the outline of the towel when it is unfolded.

The implementation of the method proved its correctness, since 49/50 configurations
that where tested were analysed correctly, whereas for only one configuration (1/50) there
were two possible topological combinations proposed, with one of them being the correct

one. For these experiments the edges and their junctions were given manually in order to
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evaluate just the results of the layer extraction and the topological analysis.

The use of the topological analysis is that, in this way, good grasping candidates can be
detected for the unfolding of the towel. Even in cases where a preferable grasping point,
e.g. a neighbouring corner of the current grasping point, is not visible, the topological
analysis provides information about the visible part that is closer to it. So, the appropriate
manipulations can be preformed in order to make it visible to the camera and grasp it.

4 Clothes Template Matching

4.1 Introduction

Object recognition is a fundamental computer vision problem and, although significant
progress has been accomplished in this field, it still remains a non trivial task. Recog-
nition of articles of clothing, in particular, is considered even more challenging, due to
their non rigid properties and their great variability in type, texture and style. In this work
we are interested in recognition of the garments during their manipulation by a robotic
system, in order not only to classify clothes according to their type, but to facilitate ma-
nipulation itself. Thus, the adopted recognition approach is based on template matching
which in addition to identification provides also information about the configuration of
the manipulated garments. A limited number of studies in the published literature address
garment recognition in general. This number is even smaller for clothes manipulated by
robots.

In Kaneko et al. [28] a planning strategy for isolating and unfolding clothes using
dual manipulator is presented. According to that approach, after a grasping region is
initially selected and the garment is picked up, two grasping points on the hemlines are
used to rehandle it, in order to facilitate the classification task. Classification is performed
in two stages, where at the first stage the type of the hanging garment’s configuration is
determined and at the second stage the appropriate geometric features are extracted and
used for the final classification of the garment. The method discriminates between shirts,
trousers and towels, presenting 90% classification accuracy.

A dual manipulator approach has been also employed in Osawa et al. [43] in order
to unfold massive laundry, while classifying the manipulated garments to the appropriate
types. A key feature of that approach is the lowest point manipulation, which results in
specific configurations for the grasped clothes that can be represented by a small number
of image templates. Then, classification is performed using simple template matching

techniques, based on image covariance, yielding classification accuracy of over 90% when
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discriminating between 8 different types of garments.

In a different direction, Kita et al. [31] employed a trinocular stereo vision system to
observe and recognize clothes during manipulation by a humanoid robot. In case the ob-
servation does not provide sufficient information for recognition, proper recognition-aid
actions are automatically planned and executed. Recognition is based on fitting the ac-
quired 3D shapes to deformable models of clothes generated through physical simulations
as described in [33]].

In Cusumano-Towner et al. [15], a Hidden Markov Model (HMM) is proposed for
estimating the identity and configuration of garments manipulated by a two-armed robot.
The transition and observation models of the HMM are based on cloth simulation. The
observation model uses simple features, such as the height of the hanged garment when
held by a single gripper and its silhouette when hanged by two grippers. The proposed
model accurately estimates the identity and configuration of a large variety of manip-
ulated garments, allowing the robotic system to autonomously bring them to a desired
configuration.

Interactive perception is also employed in Willimon et al. [S9], in order to aid garment
recognition. The clothes are grasped by an arbitrary point and two images are acquired
providing a frontal and a side view of the garment. The procedure is repeated ten times
resulting to a total of 20 images for each garment. Four types of features are extracted
from the acquired images based on area, eccentricity, binary edges, and Canny edges.
The extracted features are employed by a nearest neighbour classifier, which discrimi-
nates between six types of garments. The presented results confirm the usefulness of the
interaction stage, as the classification accuracy is increased by 59% by it.

A parametric approach to garment recognition is proposed in Miller et al. [40], ac-
cording to which each clothing category is assigned with a parametrized shape model.
Variation of the parameters accounts for the variety in shapes for clothes of the same cat-
egory. The proposed approach extends previous work [39], where the parameters were
fitted manually by a human operator. The extension is accomplished by a novel algorithm
that when given an image of a garment is able to automatically find the parameters that
provide the best fit to the model. The presented method allows garment recognition, sim-
ply by examining which model produces the best fit. However, a basic assumption of the

method is that the garments are already crudely spread out on a flat surface.

4.2 Proposed Algorithms

In this work a template matching approach, similar to the one presented in [43], is pro-

posed for garment recognition. The main difference is in the method selected for con-
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ducting the matching. In [43] simple template matching based on image covariance is
performed, whereas we employ inner distance shape contexts [36] shape matching tech-
nique. The proposed method is extending the widely used shape contexts method [4] and
presents useful properties that can benefit the garment recognition task. The employed
shape matching technique is combined with the lowest point manipulation strategy pre-
sented in [43]]. Thus, images of garments under lowest point manipulation are matched
using inner distance shape context to a collection of selected prototypes. The class of the
prototype presenting the closest match is assigned to the manipulated garment, whereas a
correspondence between their contour points is established during matching.

Inner distance shape contexts. As argued in Ling et al. [36]], part structure is very
important for recognizing complex shapes, especially when these shapes include articula-
tions, which allow for non linear transformations. Since articulations are present in most
articles of clothing such as shirts, trousers, shorts etc., garment recognition has a lot to
benefit if a shape descriptor that is insensitive to shape articulations is employed.

For this reason, the shape classification method proposed in [36], based on the concept
of inner distance, has been employed in this work for the challenging task of recogniz-
ing clothes. Inner distance is defined as the length of the shortest path within the shape
boundary and is considered to be sensitive to part structures but insensitive to shape artic-
ulations. A key advantage of the inner distance approach is that it is not dealing with part
structure and articulations explicitly, avoiding this way ambiguities regarding partitioning
of the shape.

Inner distance is a distance metric that can be combined with existing shape matching
methods resulting in an extended version that is insensitive to the non linear transforma-
tions of the articulations. As proposed in [36] it can replace Euclidean distance metric
when extracting shape context descriptors [4]. It should be noted, that shape contexts
have been successfully employed for efficient visual search of garments in the content
based image retrieval application presented in Tseng et al. [S7]].

However, the inner distance extension presents two basic differences with respect to
the original shape contexts. The first difference is that instead of using only contour points
to describe the shape, additional area information is employed. The second difference
is that the ordering of the contour points is exploited by a fast dynamic programming
algorithm [[14], which performs silhouette matching. In Figure [I0} a binary image of a
shirt silhouette is illustrated, where the inner distance paths are depicted. In this figure,
the red lines connecting contour points denote the inner distance paths that are the same
with the corresponding Euclidean paths. The green line denotes a path that differs when

the inner distance (right) is used instead of the Euclidean (left).
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Figure 10: Binary silhouette of a hanging shirt. Red lines denote inner distance paths that
are equivalent to corresponding Euclidean paths. Green lines denote an inner distance
path (right) that is different to the corresponding Euclidean path (left).

The adopted method denoted henceforth as IDSC can be applied also to silhouettes
with holes. However, only the outer boundary points are considered for matching. Hence,
the inner distance between all pairs of these boundary points should be computed. Once
these inner distances are computed, a polar histogram is constructed for every point, like
in the original shape contexts method. Notice however, that if the shape is convex the inner
distance is equivalent to the Euclidean and both methods produce identical descriptors. In
Ling et al. [36]], the concept of the inner angle is also introduced, which apart from scale
and translation makes the proposed method rotation invariant, as well.

As argued in the aforementioned study, the proposed method is considered compu-
tationally efficient. The shortest path algorithm [[14] employed for the calculation of the
inner distances presents O(n3 ) complexity, where n is the number of points. Then, the
polar histogram is computed in O(n?) time. Finally, using the computed histogram and
dynamic programming shape matching is conducted again in O(n?) time. Inner distance
shape contexts performs matching between shape silhouettes and a matching cost is pro-
duced. Then, the similarity between shapes is assessed based on that cost value.

Apart from garment recognition, matching using inner distance shape contexts results
in a correspondence between points on the matched contours. Hence, the contour of the
matched prototype can be used to model the manipulated garment and the extracted model
can be used for planning a strategy that brings the garment to a desired configuration.
However, the details of such modelling and planning remain to be investigated in future
work.

Lowest point manipulation. In order to use inner distance shape contexts for garment

recognition, certain shape silhouettes should be selected as prototypes for the different
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Figure 11: Binary silhouettes of the selected prototypes. The images have been extracted
from real garments after lowest point manipulation by a human operator.

kinds of garments. Then, a query silhouette is classified to the garment category of the
most similar prototype i.e. the one producing the minimum matching cost. In this work
six types of garments are considered: Shirt, Trousers, Shorts, T-shirt, Skirt, Towel.

Since clothes are made of non-rigid textile fabrics that can assume a great number of
different configurations, the selection of prototypes is challenging. For practical purposes
the number of considered configurations should be reduced. One choice is to consider as a
special case that the clothes are lying on a table flat and unfolded. However, knowing the
type of the clothing article before actually unfolding can facilitate the unfolding task itself.
Therefore, in this work a different configuration is considered. This configuration can be
reached starting with an arbitrary initial configuration and performing the lowest point
manipulation proposed in [43] and adopted in [[15]], as well. According to this approach
the garment is hanged by an arbitrary part, the lowest point is identified and the distance
L from the hanging point is calculated. Then, the lowest point is grasped and is used as
the new hanging point. This procedure is repeated until convergence to the maximum L
distance. After convergence, the lowest point is picked up and held near the hanging point,
while the width between them is gradually expanded until it becomes equal to L distance.
The proposed manipulation sequence converges to one or two possible configurations for
each garment type. Hence, a reasonable number of prototypes can be selected, whereas
the recognition can be performed before the unfolding task is completed. In Figure [I1]
the selected prototypes are illustrated. Except for the shorts and the T-shirt, which need
two prototypes, the remaining types always result in a single configuration that can be
associated with a single prototype. Therefore, only eight prototypes are sufficient for
discriminating between these six garment types when the lowest point manipulation is

performed.
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Figure 12: Typical garments used for the creation of the database.

4.3 Experimental evaluation

An image database of garments under lowest point manipulation has been created in order
to evaluate the classification performance of the adopted approach of garment recognition.
In Figure[I2 collection of such garments before manipulation are illustrated as reference.
A Sony DSC-HX1 camera (CMOS 9.1 megapixel) has been used for the acquisition. No
flash or any other special lighting equipment was employed.

The database includes 52 images, eight of which were selected for the extraction of the
prototypes presented in Figure [T, whereas the remaining 44 images are used for testing.
In Figure[13]the eight images selected for the extraction of the prototypes are illustrated.

For every test image, inner distance shape context is applied and shape matching is
performed between the test silhouette and each of the prototypes. Since IDSC outputs the
matching cost between the two input silhouettes, the garment in the test image is classified
to the class of the prototype presenting the minimum cost. When IDSC is employed, a
classification accuracy of 95.5% is achieved. In Figure [14] the confusion matrix for the
IDSC classification is presented. As shown in this matrix a T-shirt is misclassified to
shorts, whereas a skirt is misclassified to a shirt. The remaining 42 items are correctly
classified to their target class.

The performance of the original shape contexts method has been also evaluated for
comparison. As expected, reduced classification accuracy (about 89%) is reported. These

results indicate that the theoretical advantages of IDSC also apply in practice and garment
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Figure 13: The original images of the selected prototypes hanged by the lowest points.
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Figure 14: Confusion matrix of the garment classification based on inner distance match-
ing

25



Clopema - 288553 D5.1:Report on the Reasoning Mechanism and the Object Representation

recognition benefits from the nice properties of the inner distance metric.

In order to perform recognition during manipulation, the proposed method has been
implemented in C++ using also classes and methods of the OpenCV library, resulting
in a real time application processing video frames. Moreover, a Graphical User Inter-
face (GUI) has been designed in QT to facilitate the usage of the application. In order
to perform fast and robust extraction of the garment silhouette an Asus XtionPro sensor
has been employed providing both an RGB image and a depth map of the scene. The
communication between the application and the Xtion camera is accomplished through
methods of the OpenNI library. Figure [I5]illustrates screen shots of the developed appli-
cation, where a towel manipulated by a human operator is detected and recognized. The
application has been tested with a large variety of manipulated garments and all cases
resulted in successful recognition. For a more detailed description of the developed real

time application refer to the corresponding section in D7.2.

4.4 Conclusion

In this work a method for visual recognition of clothes has been developed and a tool for
real time garment recognition during manipulation has been implemented. The method is
based on robust descriptors employed for shape matching and on a limited configuration
space due to the performed lowest point manipulation of the clothes.

The method has been evaluated off line using images of real garments, whereas it was
implemented and embedded to a real time system, processing video frames acquired on
line by an Xtion camera. The presented results indicate that the aforementioned system
is able to perform robust real time garment recognition, which is expected to facilitate
autonomous manipulation of clothes by robotic arms.

However, during the recognition system’s evaluation the lowest point manipulation
has been performed by a human operator, who always succeeds to bring the garments to
the desired configuration. Therefore, additional testing should be conducted after embed-
ding the implemented system to the CloPeMa robot, in order to examine the applicability
of the recognition method when the lowest point manipulation is performed by the robot.
Furthermore, the performance of the recognition system should be tested in case a larger
variety of garments and garment types is employed. Moreover, prototype selection should
be further investigated in order to automatically select the most representative prototypes

for each garment type.
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Figure 15: Screen shots of the developed garment recognition tool. On launch the proto-
types are loaded (top). On XtionPRO activation two windows open (bottom), showing a
depth map of the scene (left), and the detection and recognition results (right).
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5 Modelling folded garments to facilitate unfolding

5.1 Introduction

Robot handling of non rigid materials, such as garments, remains an open research field.
State-of-the-art of robotics indicates that a robot cannot manipulate such materials suffi-
ciently. A challenging task regarding the manipulation of garments by robots is unfolding.
A variety of research on unfolding articles of clothing using robots has been conducted so
far.

In Hamajima et al. [21]], unfolding is treated as a task of a more general handling
process. In that study, the unfolding task is divided in three subtasks, i.e. hanging, rehan-
dling, and shaping deformed parts. A similar approach to unfolding is adopted by Kaneko
et al. [28]], where a classifying task is added after the rehandling task. Classification dur-
ing unfolding is also performed in Osawa et al. [43]], which focuses on the unfolding
of massive laundry. A significant difference from previous works is the proposed lowest
point manipulation, which results in a limited number of configurations for the handled
clothes.

In a different direction, Hata et al. [24] presented a robot system for cloth handling
based on a 3-D vision system with stereo cameras and pattern projector. The system aims
at the implementation of fully automated laundry factory, and it was tested on handling
towels producing high success rate.

Maitin et al. [37] also address robotic handling of towels using stereo cameras. In that
study, geometric cues are used for detecting grasp points for spreading out and the folding
towels. The presented system produced a 100% success rate in 50 trials of picking up,
spreading out and folding previously unseen towels.

A system able to handle different types of garments is presented in Cusumano et
al. [15]. The garment’s configuration and identity is estimated using a Hidden Markov
Model (HMM) until it reaches a known configuration. The transition and observation
models of the HMM are provided through cloth simulation. The estimated identity and
configuration are used to plan the appropriate manipulations that bring the garment to the
desired configuration.

In Willimon et al. [60], features such as corners, peak region and continuity of the
cloth are used to determine a location and orientation in order to interact with the cloth
and unfold / flatten it. The experimental results indicate that the proposed approach can
significantly flatten out a piece of cloth.

In this work, a novel framework for unfolding clothes is proposed. The framework

is composed by two main parts. The first one is modelling, where a model of the folded
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garment is extracted. The second one is planning, which uses the extracted model in
order to construct an unfolding strategy. Although the presented approach is still under
development and testing, preliminary results indicate the effectiveness and robustness of
the methods.

This work focuses mainly on the modelling part of the framework. The garment to be
modelled is crudely spread out on a flat surface and folded by an arbitrary axis. The key
assumption of the proposed approach is that the folding axis becomes part of the outer
boundary of the folded garment. This assumption is always valid when only a single fold
exists. In case of multiple folds, the assumption holds for the last fold. The presented
methods address the single fold case. However, the proposed framework can be extended
to consider multiple folds as well.

An image of the folded garment is acquired and its outer boundary is extracted and
approximated by a polygon. Then, each side of the polygon is examined and hypothe-
ses are generated inferring the position and the orientation of the folding axis. In order
to check the hypotheses, a prototype polygon corresponding to the unfolded garment is
virtually folded and the resulted polygon is matched using inner distance shape contexts
[36]] to the original folded polygon. The hypothesis producing the best match is verified
and the folded configuration of the garment is considered known.

The proposed framework based on hypotheses’ testing and the inner distance metric
is resilient to prototype selection. Thus, the employed prototype and the folded polygon
may derive from images of different garments. Moreover, the proposed approach allows
the use of multiple prototypes belonging to different types of garments, letting the selected
hypothesis predict also the actual type of the folded garment. Namely, the clothes can be
recognized while they are still folded and the predicted configuration can be exploited for

planning the unfolding strategy.

5.2 Proposed Method

The modelling method of the proposed framework acts in two distinct phases. In the first
phase hypotheses about the folding axis are generated, whereas in the second phase these
hypotheses are tested using prototypes of unfolded garments. As previously described,
the core assumption of this approach is that after folding, the folding axis becomes part
of the outer boundary of the folded garment. Therefore, all sides of the outer polygon of
a folded garment are considered to be potential folding axes.

An exhaustive search is performed examining all sides one by one. When a specific
side is examined, the open contour that is formed by the remaining sides is matched to the

contour of the prototype. Notice, that in order to keep the method robust, only outer con-
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tours that can be easily extracted are employed, whereas no edge information within the
polygons is considered. However, matching the outer contours is extremely challenging,
since the initial contour can be fragmented over several pieces after folding takes place.
Moreover, some fragments can be missing due to overlaps, whereas fragments belonging
to different parts of the initial contour can be wrongly connected after folding. The exis-
tence of fragmented correspondences indicates that only partial contour matching can be
achieved.

In order to tackle the above challenges, the approach proposed in Riemenschneider
et al. [47], has been adopted. In that study, a method performing object category local-
ization by partially matching edge contours to a single shape prototype of the category is
proposed. In the same study, a novel shape descriptor is employed, which is also adopted
by our framework. A significant advantage of the adopted matching technique is that it
enables efficient selection and aggregation of partial matches to identify and merge similar
overlapping contours.

The adopted descriptor, denoted henceforth as delta descriptor, is calculated from the
relative spatial orientations between lines connecting points sampled on the contours.
Therefore, matching is highly dependent on the sampling distance, and in [47] this is
compensated by searching over a large range of sampling scales. However, the adopted
descriptors are translation and rotation invariant. When the sampling distance is fixed
they are also scale invariant. Another important property of the adopted descriptor that is
not identified in [47] is that it is, in some sense, reflection invariant. This property is very
useful in case of folding, since the folding axis can be considered as a reflection axis for
the unfolded contour. Hence, after folding some parts of the outer contour may actually
represent reflections of parts belonging to the initial contour. A subtle point is that a single
reflection inverts contour orientation, whereas delta descriptor is not invariant to such
inversion. Therefore, in order for delta descriptor to be truly invariant to reflections, the
contour orientation should be changed back to the original one. Since the outer contour of
the folded polygon can be a collage of original and reflected parts of the unfolded contour,
the following strategy is proposed.

An arbitrary contour orientation is selected for the unfolded contour and delta descrip-
tors are extracted. Then, delta descriptors are also extracted by the folded contour using
the original orientation. A second set of delta descriptors are extracted using again the
folded contour but inverting its orientation. Then, matching is performed twice. The first
set of descriptors is used for matching unfolded parts of the contours, whereas the second
set is used for matching parts of the original contour to folded parts of the query contour.

Each match is assigned an affinity score and after thresholding only strong matches re-
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main. As described in [47] similar overlapping contours are merged and the remaining
matches are aggregated.

In Figure [I6p the simplified polygon corresponding to a folded T-shirt is illustrated,
whereas the folding axis is denoted by a red dashed line. In Figure [I6b an example of
a partial match is illustrated. In this figure the prototype polygon, corresponding to the
unfolded T-shirt, is depicted with black crosses, whereas the folded polygon is depicted
with blue crosses. The part of the folded polygon denoted by magenta crosses is correctly
matched to the part of the prototype polygon denoted by red crosses. The same applies for
Figure [I6k, only in this case both parts correspond to the unfolded region of the contour.
Finally, in Figure [I6d an erroneous match is presented.

In [47], the performed object category localization is also based on hypotheses. How-
ever, the methods employed in [47] for hypotheses generation and verification are not
suitable for folded shapes and a different approach has been developed and integrated into
our framework. Thus, in our approach every partial match generates an initial hypothesis
about the position and orientation of the folding axis, with respect to the employed pro-
totype. Then, a local affine transformation is estimated based on the matched parts and
is applied to the examined side. When the resulting axis is outside the prototype contour,
the hypothesis is dismissed. In fact, instead of using the initial contour, the prototype
is eroded and a smaller contour is employed. This is done in order to discard erroneous
hypotheses based on unfolded sides of the prototype, which after correct matching lead
back to the correct side. However, due to imprecision, the prediction can be interpreted
as a fold parallel to a side. Thus, the proposed approach does not cope with such folds
if they are too close to the corresponding side. In case the initial hypothesis prediction is
not entirely outside the eroded contour, it is preserved for further testing. The majority of
the hypotheses are discarded after checking the position of the predicted axis. Therefore,
fewer computations are needed in the final verification phase.

In Figure[16p an example of a generated initial hypothesis is illustrated. In this figure,
blue circles denote the position of the fragment shown by magenta crosses after applying
the affine transformation estimated by the match. The same transformation is applied to
the examined folded polygons side denoted by the blue dashed line and the result is illus-
trated by the red dashed line. In the presented example, the generated initial hypothesis
denoted by the red dashed line is actually valid. However, this is not yet verified and the
generated hypothesis is preserved for further testing. In Figure[I6f another valid hypoth-
esis is generated, whereas in Figure [I6{d an invalid hypothesis is generated but since it
predicts a legal position for the folding axis it is also preserved for further testing.

Different partial matches can result in very similar hypotheses. This is expected in
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Figure 16: A virtually folded T-shirt, where the red line in (a) denotes the location of

the actual fold. The red dashed lines in the remaining subfigures denote the predicted
locations of the fold according to the generated hypotheses.

32



Clopema - 288553 D5.1:Report on the Reasoning Mechanism and the Object Representation

case the matches are correct and it is exploited by aggregating similar initial hypotheses
before proceeding to further testing. Each initial hypothesis is assigned with a confidence
score Cs, which is computed as a product of two other scores. The first one is the affinity

score As of the match used for generating the hypothesis. The second score Raxis is given
by:
e i, ifLin#0
Raxis = (2)
0, if Lin=0
where Lout denotes the axis length that is predicted to be outside the prototype and Lin
denotes the axis length that is predicted to be inside the prototype.

The higher the values of As and Raxis, the greater the confidence on the validity of a
certain hypothesis. Of course, as already explained in case of Raxis = 0, the hypothesis is
dismissed in an early stage.

The remaining hypotheses are aggregated in a similar manner to the one used for
the selection of the matched fragments. Namely, a binary image is calculated, where
each pixel represents a hypothesis and connected components analysis is performed. In
this case the horizontal image axis corresponds to angles, the vertical to distances and
each pixel represents the folding axis of each hypothesis, given in polar form. Therefore,
similar hypotheses are expected to create connected regions in this binary image. After
identifying a component, the associated confidence scores are summed and the result is
thresholded. In the case when the components hypotheses are not dismissed, they are
merged in a single hypothesis by calculating a weighted average of the involved axis. The
corresponding confidence scores are used as weights for the calculation.

As a result of the above procedure, only a small portion of the initial hypotheses
survive. Only these hypotheses are tested in the final verification stage, which is perhaps
the most computationally intensive.

Each hypothesis determines a folding axis on the prototype contour. The predicted
axis is used to virtually fold the prototype and a predicted folded contour is generated.
The predicted contour is matched to the folded contour using inner distance shape con-
texts and a matching cost is estimated. The hypothesis resulting in the predicted contour
that presents the minimum cost is selected as the most probable one. In case the estimated
cost is lower than a predefined threshold, the selected hypothesis is verified. The matched
virtual contour corresponding to the selected hypothesis is used to model the folded gar-
ment. The extracted model provides the location of the folding axis and assigns contour
fragments to different folded parts.

The estimated model can be used for planning the unfolding strategy. However, some

additional visual cues are needed, since the model is agnostic to which side is on top. The
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exact planning strategy is still under investigation. The same applies for the extension
of the modelling method in order to deal with garments presenting multiple folds. In
principle, a modification of the final verification stage combining different hypotheses
should be able to predict contours under multiple folds. However, the effectiveness of
such approach remains to be experimentally verified, since testing even a small set of

hypotheses may become computationally intractable.

5.3 Experimental Evaluation

A series of experiments has been designed in order to assess the effectiveness of the
proposed approach. As described above the adopted matching technique is sensitive to the
selection of the sampling distance. Hence, in the conducted experiments a fixed sampling
distance is employed, minimizing any mismatches due to discrepancies between point
correspondences.

The first set of experiments examines the ideal case, where a prototype is virtually
folded by an arbitrary axis and the proposed approach is applied to the resulting con-
tour, using for reference the original prototype. This allows for extensive testing employ-
ing a large number of different folding axis, whose location on the unfolded contour is
known. Since folding is performed virtually, only rigid transformations are considered.
This implies that once matching is correct, the locally affine assumption always holds.
The robustness of the proposed approach in case of non-rigid transformations remains to
be examined in future experiments using images of garments that are physically folded.

Five different types of garments have been considered. Namely, the examined types
include T-shirts, shirts, trousers, shorts and skirts. Real garments have been employed and
the unfolded contours were extracted sampled by roughly 120 points. For each garment
60 different folding axes have been arbitrarily selected using pairs of contour points at
random. Then, the garments have been virtually folded and the derived contours were
resampled using the same sampling distance as for the prototype contour. An example of
the detection experiments is illustrated in Figure |17| for different prototypes and folding
axes. The images of the prototypes are depicted on the left hand side and the selected
folded axes are denoted by red lines. In the right hand side the detected axes and the
corresponding virtual folds are presented.

The main measure used for the evaluation of the prediction results is the difference
between the actual and the predicted position and orientation of the folding axis. The
position and orientation of the axis is provided in polar form and is defined by only two
parameters. The first one is the distance p of the axis from the origin of the selected

coordination system, whereas the second parameter is the angle 6 that the folding axis
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forms with respect to the x axis. The distance is originally measured in pixels but for
facilitating the interpretation of the results it is normalized with respect to the major axis
of the ellipse that has the same normalized second central moments as the region defined
by each prototype.

A summary of the results is provided in Table |1, where the mean differences dp,d0
of the aforementioned parameters over the 60 folds and the corresponding standard devi-
ations are provided for the examined garments, after discarding outliers. The presented
results provide a quantitative assessment about the accuracy of the proposed approach.
However, there is not a clear threshold between a correct prediction and an erroneous
one. A 0.1 difference in the normalized distances and a 5 degrees difference in the angles
have been subjectively selected as a reasonable tolerance of the predicted axis deviation
from its actual position and orientation, respectively. In fact, these values were also used
for determining the outliers before calculating the aforementioned statistics. In the third
column of Table |1| the correct detection rate based on the defined tolerance is given for
each garment type.

The highest detection rate is presented by the T-shirt and the Skirt, where only one
case resulted in detection failure. The lowest detection rate is presented by the Shirt,
where three folding scenarios resulted to detection failures. However, there is also a
qualitative difference between the different cases. In some of the failures the problem is
only in the accuracy of the detection, due to imprecision in the estimation of the employed
affine transformations. On the other hand there are cases where the failure is caused by
verifying completely erroneous hypothesis based on wrong matches. In these cases we
can objectively assess that the method is failing. Thus, in the last column of Table
the absolute number of failures caused by verification of erroneous hypotheses based on
mismatches is presented.

In the total of 300 folding scenarios only 4 cases resulted in verifying erroneous hy-
potheses. However, there are 5 more cases, where detection fails because the detection
accuracy is above the specified tolerance. The remaining 291 folding scenarios result in
accurate axis detection indicating the robustness of the proposed approach. In general,
similar results are produced by the different garment types. However, in case of Pants,
the proposed approach presents slightly inferior performance with respect to accuracy and
hypothesis verification.

The next set of the experiments evaluates the methods performance when the garments
that are used for folding are different from the prototypes used to predict the folding
axis position. Although this phase of testing is not complete yet, initial results based on

subjective evaluation of the predicted folds indicate that the method is robust to moderate

35



Clopema - 288553 D5.1:Report on the Reasoning Mechanism and the Object Representation

Table 1: Folding axis detection results for 5 garments, using 60 folding scenarios for each

Type dp do Detection Rate | Mismatches
Pants | 0.019+£0.020 | 1.75+£1.82 96.7% 2
Shorts | 0.01440.019 | 0.96+1.01 96.7% 1
Shirt | 0.017+0.018 | 1.17£1.04 95% 1
T-shirt | 0.016£0.022 | 0.90+1.12 98.3% 0
Skirt | 0.0144+0.015 | 1.04+0.91 98.3% 0

differences between the prototypes and the unfolded contours of the folded garments.
Initial testing using multiple prototypes of different types for detecting the same fold

indicates that the proposed method is able to discriminate between different garment types

based on the prototype that generates the hypotheses with the minimum final matching

Ccost.

5.4 Conclusion

In this work a method for modelling folded garments in order to facilitate unfolding has
been proposed. The method is based on the simple but reasonable assumption that the
folding axis becomes part of the outer boundary of the folded garment. Hence, each
side of the folded contour is considered to be potential folding axis. Using unfolded
prototypes, hypotheses can be generated about the position and orientation of the axis
with respect to these prototypes. The hypotheses are generated based on partial matching
between the prototypes contour and the folded contour. Using only contour information
is an important attribute of the proposed method, since when it is applied to real garments
it is not affected by their great variation in texture and colour.

The proposed approach to garment unfolding is a work in progress. However, the
presented quantitative evaluation documented high accuracy in folding axis detection.
Moreover, the correct detection rate for the 300 virtual folds that were tested is over 97%.
The presented results of these initial experiments indicate that the proposed method could
be employed for modelling a folded garment before planning the unfolding strategy.

As a next step, the methods tolerance to deformations should be quantitatively as-
sessed. In order to do that, clothes should be folded both virtually and physically and the
results should be compared. Although the method is designed to be insensitive to mild
deformation, in case the comparison results are not satisfactory, the method should be
modified in order to explicitly cope with deformed contours.

The selection of prototypes also needs further investigation. So does the impact of
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Figure 17: A virtually folded T-shirt, where the red line in (a) denotes the location of
the actual fold. The red dashed lines in the remaining subfigures denote the predicted
locations of the fold according to the generated hypotheses.
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increasing the number of prototypes on the performance and reliability of the system.

An image database of unfolded garments should be acquired and a strategy for select-
ing prototypes for each garment type should be developed. A popular selection approach
is using k-medoids clustering [30], whereas the number of clusters can be automatically
selected using the silhouette method [49]. Then, the discriminating ability of the method
between different prototypes should be experimentally evaluated. Finally, folding scenar-
10s that include multiple folds should be considered and appropriate modifications should
be made to the presented method for modelling folded garments.

However, even if the method is applied effectively and the model of the folded garment
is successfully extracted, the derivation of the remaining steps for the actual unfolding is
not straightforward. An initial direction that will be examined for the planning part of the
framework is the geometric approach presented in Miller et al. [39, 40], which in that

study is employed for the folding task.

6 A Framework for High-level Understanding

One of the key challenges of clothes recognition and perception is handling the variabil-
ities in geometry and appearance. This variability is due to the large number of different
configurations that clothes can take, self-occlusion and the wide range of fabric textures
and colors. On the other hand, clothes are characterized by a consistent high level struc-
ture that may be represented concisely by a small number of production rules upon the
clothes parts. And-Or graph grammars are the ideal architecture to represent an object by
its parts which are related by specific rules. Moreover, graph grammars can handle situa-
tions of self-occlusion as they can recognise an object from a small number of pieces of
evidence. In the following subsections the basic theory behind And-Or graph grammars

is introduced and adapted to the problem of clothes understanding.

6.1 State-of-the-Art

Textiles do not have a stable shape and cannot be manipulated on the basis of an a priori
geometric knowledge. However, the solution of the “laundry problem” is strictly related to
the successful perception and manipulation of clothes, as described in the CloPeMa DoW.
As has been described in Section 2.5 of the D1.1 deliverable, the most common approach
to address this problem is a sequence of elementary manipulation actions [59, 44} 28]. All
these approaches grasp the garment sequentially from different points of interest, until

enough information becomes available to permit garment classification.
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Within the CloPeMa project this problem will be encountered through the application
of a combination of logic rules of perception that model human reasoning. As will be
shown in the following sections, eventhough the development of this architecture is still
at an early stage, the preliminary results seem very promising for the successful solution
of the perception problem. The core of this architecture is the well known “Graph Gram-
mars” [63]], which include a tree structured decomposition of the contents of a scene, from
scene labels to objects, parts and primitives, and a number of spatial and/or functional re-
lations between the various tree nodes and for every level of the tree.

The application of Graph Grammars to scene interpretation dates back to the 70s [42],
but it was just a few years ago that this architecture received intense scientific interest,
partly due to the limitations of the appearance based and machine learning methods when
they are scaled up. Despite the various implementation approaches reported in vision
literature, most of them share a common tree architecture. They are represented as an
And-Or graph, where each Or-node defines possible alternative sub-configurations, and
each And-node merges a number of lower level components to a more complex higher
level component.

To our knowledge there exist no application of such architecture to confront the clothes
classification as defined by the “laundry problem”. The current state-of-the-art of this ap-
proach, in regards to garment perception, is limited to clothes modelling and recognition,
applicable to vision problems and graphics tasks, such as dressed human recognition and
tracking, human sketch and portrait.

One of the most noteworthy representatives in this field is the work of Chen H. et al.
[10]. In their 2006 publication they described a context sensitive grammar in an And-
Or graph representation, which produced a large set of composite graphical templates
to account for the wide variabilities of clothes configurations, such as T-shirts, jackets,
etc. In a supervised learning phase, they asked an artist to draw sketches on a set of
dressed people, and they decomposed the sketches into categories of clothes and body
components: collars, shoulders, cuff, hands, trousers, shoes etc. Each component had
a number of distinct sub-templates (sub-graphs). These sub-templates served as leaf-
nodes in a big And-Or graph where an And-node represented a decomposition of the
graph into sub-configurations with Markov relations for context and constraints (soft or
hard), and an Or-node was a switch for choosing one out of a set of alternative And-nodes
(sub-configurations) - similar to a node in stochastic context free grammar (SCFG). This
representation integrated the SCFG for structural variability and the Markov (graphical)
model for context. An algorithm which integrated the bottom-up proposals and the top-

down information was also proposed to infer the composite clothes template from the
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image.

Graph grammars are more widespread for applications concerning human pose es-
timation. Zhu L ef al. in 2008 [62] presented a novel structure learning method, Max
Margin And-Or graph (MM-A0QG), for parsing the human body into parts and recovering
their poses. Their method represented the human body and its parts by an And-Or graph,
which is a multi-level mixture of Markov random fields (MRFs). Max-margin learning,
which is a generalization of the training algorithm for support vector machines (SVMs),
was used to learn the parameters of the And-Or graph model discriminatively.

In 2011 Wu T. et al. [61] published a numerical study of the bottom-up and top-down
inference processes in And-Or graphs using human faces as high-level vision examples.
Also in 2011 Rothrock B. and Zhu S.C. proposed a stochastic grammar model that repre-
sented the body as an articulated assembly of compositional and reconfigurable parts [48]].
The reconfigurable aspect allowed a compatible part to be substituted with an alternative
part with different attributes, such as for clothing appearance or viewpoint foreshorten-
ing. Relations within the grammar enforced consistency between part attributes as well as
geometry, allowing a richer set of appearance and geometry constraints over conventional
articulated models.

Finally Morariu V.I. ef al. in 2012 described a framework that leveraged mixed prob-
abilistic and deterministic networks and their And-Or search space to efficiently find and
track the hands and feet of multiple interacting humans in 2D from a single camera view
[41]]. Their framework detected and tracked multiple peoples heads, hands, and feet
through partial or full occlusion. It required few constraints (did not require multiple
views, high image resolution, knowledge of performed activities, or large training sets);
and made use of constraints and And-Or Branch-and-Bound with lazy evaluation and
carefully computed bounds to efficiently solve the complex network that resulted from
the consideration of inter-person occlusion.

Graph grammars have been applied to numerous other applications, from room scenes
classification to object recognition [22}, 135,153} 34]. One important feature that is exploited
in many of these applications is the fact that graph grammars can provide reasonable ac-
curacy in classification even with large portions of the inspected objects under occlusion.
References [41] and [61] are exceptional examples of this functionality. Moreover, [63]] is
an excellent reference for numerous case studies where graph grammars are used not only
for scene interpretation in the presence of occlusions, but also for prediction-through-

training of the occluded components.
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6.2 Graph Grammars Basic Theory

Graph grammars, as introduced in [[10], can be represented by a 5-tuple as:
G=(N,T,R,X,A)

where:

e N, are the non terminal nodes. They consist of the And-nodes U and the Or-nodes
V. So we can say that N = U UV. And-nodes are configurations which consist of
a number of sub-configurations, according to some production rules ry,...,ry € R,
(k denotes the number of rules). Or-nodes are configurations which can alternate

between different sub-configurations.

e T are the terminal nodes or the primitives. Primitives are the smallest possible
configurations that can be detected in the image. They play the role of the letters in

text graph grammars. They are the elements from which words are constructed.

e R is the set of rules. These rules are used in order to describe how a configura-
tion can be composed by smaller sub-configurations. Rules also contain the spatial
relations and constraints between the sub-configurations. For example, a rule can
describe how trousers are composed of two legs and how they are arranged geomet-

rically in order to form the trousers.

e Y is the set of valid configurations, i.e. the different configurations the initial image
can take when parsing it with the graph grammar. In the case of clothes recognition,

the configurations are the clothes categories such as trousers, shirts and skirts.

e A is a set of attributes that are relevant to each node or sub-configuration in the
graph grammar. For example, the trousers can have as attributes the size of the legs

and the length of the waist opening.

A simple graph grammar is shown in Figure [I8] The squares correspond to the ter-
minal nodes, i.e. the primitives. The first layer above the terminal nodes, nodes E, F, G,
H, are the first sub-configurations consisting of primitives. The graph can grow up to the

root node which can describe a whole scene.

6.3 Boundary simplification and primitives extraction

Clothes in general can contain any kind of textures or colors. This makes the interior of

clothes less informative about their category. At this stage in our research we consider

41



Clopema - 288553 D5.1:Report on the Reasoning Mechanism and the Object Representation

’ TN
AA
// ,‘"’7 N
/ [
B) () (b
>‘ _/ N ;/
/ \\ /, \\ /,/ \\
) / \\\ . Ve \\\ ‘.‘./I \\
i,'_/\ /\s{\ /\f\ .
(E) (F) (G (H)
S S N e
[ FAN AN
/ \ / \.“ A

/ f \
f
\
.
‘

5108 7]

O And nodes

.

() Or nodes

D Terminal nodes, primitives

Figure 18: An And-Or graph grammar.

only the shape of clothes and especially their boundaries. Furthermore, for simplicity, we
assume that a garment is lying on a table and most of its parts are unfolded.

The image acquisition is implemented under a uniform, white background, in order
to extract the clothes through background subtraction. This process will be refined when
the robot installation is finalized and the image acquisition system is fully functional. In

Figures [19(a)|and [T9(b)| an example of this process is presented.

Having segmented the garment from its background, we then trace its boundary points.
The Douglas-Peucker Polyline Simplification [235] is then applied to these boundary points
in order to get a simple sketch of the boundary of the garment, as shown in Figure[I9] This
sketch, composed of 300 boundary points, represents the input to the primitives extraction
procedure.

In its current implementation, the developed architecture confronts the perception
problem assuming that there are only two kinds of garments available, trousers and shirts.
The primitives have to be small boundary segments, which are structural elements for
the boundaries of both trousers and shirts. We introduce two such primitives, which are
symbolically called “IT” and “A” for their structure, as shown in Figure 20}

These primitives are extracted by tracing the simplified boundary using heuristic sim-
ilarity measures, which are scale and rotation invariant. After the boundary tracing, a
number of basic primitives are collected and form the terminal nodes of the graph gram-

mar. These primitives will construct more complex configurations at higher levels of the
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(a) (b) (©)

Figure 19: a) Original image. b) Trousers segmented from the background. c¢) Trousers’

boundary after simplification.

(a) (b)

Figure 20: a) Primitive “IT”. b) Primitive “A”. Corners are marked with red.

tree using the rules and the structure of the graph grammar.

6.4 Logic Rules and Attributes

In this section we will introduce the logic rules used in our graph grammar along with
their node attributes. Having the primitives extracted, we can apply the rules in order to
form more complex configurations, until we finally reach a definite garment configura-

tion. This procedure is called bottom-up parsing or bottom-up detection.

Logic Rules

The first 3 rules are directly related to the primitives. They can be expressed as:
e rule 1: A “IT” is above a “A” and they have the same direction.
o rule 2: A “II” is at the bottom right of a “A” and they have opposite directions.

o rule 3: A “II” is at the bottom left of a “A” and they have opposite directions.

These rules are illustrated in Figure to where the direction of the primitives
is also defined and their application to trousers is shown in Figures21(d)|to21(f)} For each
rule applied, we construct a new node on our graph which has as children the primitives
of the rule. Thus a connection is created on the graph between the children and the node.
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Figure 21: a-c) Rules 1-3. d-f) Rules 1-3 examples on trousers.

The new node contains a more complex configuration, consisting of the combination of
two primitives. This configuration is denoted as config", where r is the rule number that
created the node. Nodes that have been created according to rules 1-3 form the second
layer of the graph, just above primitives. Figure[22shows how primitives can be combined
to form each rule and how they are adopted to the graph.

Working similarly, we can produce the third layer of the graph and so on. This pro-
cedure of constructing the graph grammar based on our initial image and the primitives
currently extracted is known as parsing on the fly. This means that we do not have a static
graph grammar that is used for the whole database of clothes but a new graph grammar is
constructed on the run for each new garment that our system is currently processing.

The third layer of nodes in our graph grammar is created using a new set of rules,
this time by using only the nodes of the second layer as structural elements, as shown in
Figure 22] This set of rules are defined as:

e rule 4: A config! appears together with a config? and they share the same “A”

primitive.

e rule 5: A config! appears together with a config> and they share the same “A”

primitive.

e rule 6: A config? appears together with a config® and they share the same “A”

primitive.
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e rule 7: A config?® appears together with a config® and they share the same “IT”

primitive.

As expected, moving higher in the graph hierarchy the configurations begin to resem-
ble better the shapes of the specific clothes. More specifically, configurations 4-6 are
getting the shape of the trousers, while configuration 7 is getting the shape of a shirt, as
can be observed in Figure

The last step in the bottom-up parsing procedure is to combine configurations 4-7 to
form the 4th graph layer. The nodes of this layer contain full configurations of trousers or

shirts. The last rules are:

e rule "Trousers’:

A config® appears together with a config® and they share the same config'.
or

A config® appears together with a con fig® and they share the same con fig>.
or

A config> appears together with a con fig® and they share the same config>.
o rule 'Shirt’:
A config® appears together with a config® and the config? of the first one is the
config® of the second one.
or
A config’ appears together with config? and config® sharing one “A” with the
config? and the other “A” with con fig>.

The final nodes created by these rules are connected to the root node. The root node

is an Or-node which can lead to one of the various clothes configurations.
Attributes

In order to evaluate how the rules correspond to clothes configurations, we assigned
some attributes to each node. These attributes mainly hold distance units between prim-
itives, but in future they will contain various kinds of features. In our graph grammar, A
can be written as:

A={d:i€R,j=1.M}
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Figure 22: Graph grammar of the implementation. It is used to recognize trousers and

shirts.
a;
1
(b) ()

(a)

Figure 23: a-c) Rules 1-3 along with their attributes.

We denote with a} the jth attribute of the ith rule or configuration. Table [2|displays all
the attributes used so far. They are also shown graphically in Figure 23] for the first three
rules and they are identical for all the other rules.

In the ‘Trousers’ and ‘Shirt’ rules all attributes are inherited from their children. In the

next section we describe how we use these attributes in order to infer the types of clothes.

6.5 Inference, Training and top-down hypothesis

The inference of the model for a specific image has the goal of validating the bottom-up
proposals for clothes types by a top-down strategy. Our current inference strategy is based
on heuristic rules, however, it produces promising results on our clothes database. At the

moment, our database contains clothes which are mainly unfolded, or have at most one
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Table 2: Attributes of the graph nodes

Attribute | Description
a} The distance between the two corners of the “IT”.
1 The vertical distance from the top of the “A” to the horizon-
% tal line of “IT”.
2 The distance between the top of the “A” and the closest cor-
1 ner of the “IT”.
a% The distance between the two corners of the “IT”.
a?.z Same as aiz
a‘iz Same as a}’z
a‘i 4 Same as a%’z
a , Same as aiz
a§74 Same as aiz
a?_z Same as a%’z
ag.4 Same as ai”z
aj , Same as a%’z
ag Same as a%

fold. Example images are shown in Figure[24] In order to infer how well a rule applies to
a certain garment, we observe some characteristics on the attributes of the rules.

When we have an image of trousers, rule 1 can be applied. In all trousers, the ratio
al /a} takes values inside a small range. So this ratio can be used in order to assess how
well rule I corresponds to trousers. Furthermore, rules 4 and 5 can be applied. It is also
observed that aj/a} and @} /a3 take values around 1/2. Attributes aj and a; correspond
to the width of the leg, while attributes a‘lt and a‘? correspond to the length of the waist.
Also in rule 6, a? and ag corresponds to the length of each leg. We can assess this rule
by examining how close the ratio a? / ag is to 1. Finally, in order to discard quickly some
instances of the above rules produced by noise, we check the width and height of the legs
to take reasonable values for a human body.

Considering the shirts on the other hand, we examined rule 7. As in the previous
example, again the ratio a{ / az takes values inside a limited range. Also az and ag, being
the two vertical sides of the main body part, should take almost equal values. Moreover,
we check again the width of the sleeves and the main body part to take reasonable values
according to human body.

Training consists of learning all the above ratios (or any other production rule used)

for every type of garment. Having enough values obtained from training, we can use a
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trousers score: 0.91 trousers score: 0.57

i . trousers score: 0.40
shirt score: 0,00 chirt score: 0,97

U
(a) (b ©

trousers score: (.92 trousers score: 0.44 shirt score: 0.48
shirt score: 0,00 shirt score: 0.74

2

d) (e) ()

Figure 24: a-c) Rules 1-3. d-f) Rules 1-3 examples on trousers.

simple nearest-neighbour inference algorithm to assess the type of clothes. For training
we used half of the images in the database, previously annotated. Images contain only
trousers and shirts.

Another important extension of our architecture is the ability to create hypothesis for
parts of the clothes that are missing in our graph grammar. If a part is missing among our
primitives, we cannot parse the graph until we reach our final rules and we cannot gain a
complete clothes configuration. Intermediate nodes which contain sub-configurations of
a cloth, can then be used to assess the possible positions of missing primitives. Primitives
can be missing for mainly two reasons. The cloth is folded so there are self-occlusions
and misplacements or image processing techniques failed to retrieve some primitives.
Based on geometric rules, we can make initial hypothesis of the missing parts of the
configuration. This can be helpful in order to search again for primitives in a smaller area
of interest, with different parameters. On the other hand, we can predict folds and give
instructions to the robot in order to manipulate the clothes and bring them to a known
configuration.

In Figure [24] some results of clothes recognition are presented. In our database, we
obtain 100% success in recognizing simple, mainly unfolded clothes. Moreover, Figures
R24(c) and 24(T) show two examples of folded clothes, and how the position of the missing
parts can be predicted.
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6.6 Future Work

Working towards the development of the final graph grammar architecture we plan to
gradually increase the complexity of the tree structure presented in Figure [22] First of all
we will expand the rules and attributes, so that other clothes types can also be addressed.
Of course, this means that the primitives extraction process should be revisited and en-
riched with interior features, like buttons, collars, pockets, etc. We also plan to investigate
the possibility of using the data acquired from the 3D sensors so as to enrich even further
the primitives list and the formulation of the logic rules.

An even more promising framework for this architecture would be an automated for-
mulation of logical rules, based on training data.

A large portion of our efforts will also be dedicated to link our architecture with
the clothes manipulation process. When ambiguities arise in the graph parsing and no
clothes configuration can be inferred, then we can make hypothesis according to the rules.
Through robot interaction, we will try to extract any occluding parts of the clothes and
manipulate them so that an adequate information may become available for successful
recognition.

Finally, it appears that the And-Or graph grammar is sufficiently general to allow
incorporation of alternative robot ‘action’ nodes as a way of actively reasoning about the
clothes manipulations and thus obtaining missing information in a top-down direction.
This will be investigated as a way of possibly integrating the sensory and the motor parts
of the project.

7 Conclusions

The deliverable reports our progress on the perception of garment surfaces aimed at their
efficient manipulation. Unlike robotic manipulation of rigid objects, the huge configu-
ration space of deformable objects such as clothes, requires more powerful perception.
Noticing that humans break down the problem into a set of increasingly simpler tasks
(with respect to vision) we follow a similar line of attack.

The first work presented deals with recovering the configuration of a hanging towel
from a single image. We have used a simple representation of the hanging cloth as a set of
overlaping surfaces together with a connected graph of edges and junctions on the image.
We have demonstrated that by using simple heuristics obtained from prior knoweldge it is
possible to rule out invalid configuration hypotheses and thus obtain one or two possible
configurations. Although this is a step forward with respect to the state-of-the-art there are

also several limitations that we wish to investigate in the future. Our approach relies on
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relatively good segmentation of the surface, and our current feature extraction (fold and
corner detection) and topological network construction are not robust enough. We believe
that these may be improved using more elaborated region-based segmentation techniques,
combining color and depth information, and using less noisy depth images (by means of
the CloPeMa stereo-head). Furthermore our approach is currently limited to a rectangular
template. However, the geometric rules used may be extended to an arbitrary known
polygon (e.g. a shirt template) and even if the template is not known one may iterate over
the few possible garment shapes (at least under the assumption that it is topologically
planar).

The second work regards recognition of the garment and registration with a template.
Our first results were on the use of state-of-the-art deformable shape matching techniques
for matching a garment image in a known configuration with a set of templates. We ob-
tained very good results on a realistic data set. Later on we investigated the challenging
and novel problem of recognizing the shape of a garment with unknown configuration
but limited to a one or more planar folds. Our preliminary results indicate that partial
matching techniques combined with geometric inference were very effective for recog-
nizing the shape of the garment and subsequently recovering the location of the fold(s).
We are currently testing this approach on a data set of real clothe images. Although the
performance is expected to drop there is still plenty of room for improvement since for
the moment only boundary information has been exploited.

The third research strand is on understanding the high-level structure of garments.
A graph-grammar approach was proposed that helps to combine high-level “syntactic”
knowledge with low-level features. Our goal is two-fold. First, we aim at recognizing
garments even when only a few cues are visible on the image (e.g. humans will recognize
a shirt only be seeing a collar and a few buttons). Our framework allows for incrementally
incorporating such cues (also tactile, movement) thus may be applied at all stages of the
manipulation. Secondly, in order to perform tasks such as folding that are defined by
high-level actions, we need to obtain a high-level representation (e.g. sleeves, button-
line, colar). For the moment we have demonstrated the feasibility of our approach on
relatively simple examples. However, there are several limitation that still have to be
addressed. The most important one is the need for enriching the compendium of visual
cues that are currently used so that we may exploit the presence of structures on the surface
of the garment (e.g. pockets, necklines). We are working on a machine-learning based
approach that will allow us to incorporate such cues in the framework without resorting
to heuristics.

Finally, let us bring the above in the context of the laundry folding task (in a simplified
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manner). The clothe is initially grasped by a corner. The perception system will produce
a list of possible configurations and associated grasp affordances. Alternatively if no
grasp affoardances are identified a rotation or re-grasping strategy will be proposed. Once
a grasp affordance has been identified it will be grasped with the other hand and the
clothe will hopefully become flat. Then the clothe will be laid on the table, and the shape
registration/recognition algorithm may be applied. An unfolding strategy may now be
planned and performed. The high-level perception module will infer garment parts and

the folding routine will be initiated.
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